Tag Archives: pcb

Standalone Inductance Meter on a Etched Board

In late 2014 and early 2015 I had posted a short series on an inductance meter project. The first post in that series described an Arduino shield that allowed an Arduino UNO to do inductance measurements and got this blog mentioned on dangerousprototypes.com for the very first time.

I got a lot of encouraging feedback and some time last year Andy Beasley asked me if I could help him extracting Gerber files from Eagle so that he could get some boards made and build his own. I was happy to do so and was rewarded with half a dozen boards. Thank you very much, Andy.

At the time I was busy working on other projects so the boards collected some dust until Sean Connolly sent me a message asking if I could make an inductance meter for him. That was a great opportunity to finally build up one of these boards.

The result was the most  beautiful of my inductance meters so far. There’s nothing new technically – It’s still the circuit described in this post.

By the way, I’ve started to share more and more of the projects on github. All the photos, descriptions and so on will continue to be published here on soldernerd.com but I will put the download material such as source code, eagle files and the like on github.com/soldernerd where it is easier to keep files in sync and to potentially collaborate with other developers.

So here’s a list of the relevant repositories on github:

Ultrasonic Anemometer Part 20: Standalone Anemometer Design

Last time I outlined my reasons to ‘go digital’ by adding a powerful on-board microcontroller and designing a standalone wind meter.

20160426_StandaloneAnemometer_001

In the weeks that followed that decision I tried to find a suitable microcontroller and to design a prototype. Today I’ll show you the result of that work.

20160426_StandaloneAnemometer_003

I looked at various series of microcontrollers from different manufacturers and finally decided to go for the Microchip PIC32 series. It offers everything I could possibly ask for: 32 bit architecture, inexpensive, vectored interrupts, integer division, any interface you want (depending on the model of course) , available in large, low pin count, hobbyist friendly packages and so on.

20160426_StandaloneAnemometer_011

As you can see above, the model chosen for my prototype is a PIC32MX220. This is low to mid-end representative of this series but even so the specs are quite impressive. CPU clock up to 50MHz, one instruction per clock cycle, full-speed USB 2.0, 32kB flash, 8kB RAM and all of that in a SOIC28 package at a price of CHF 3.58 in single quantities.

20160426_StandaloneAnemometer_005

After having chosen a chip the next task was to come up with an actual design. I took my anemometer driver design and tried to integrated the new PIC32. That driver circuit had performed extraordinary well so I changed very little. I left away the RELEASE signal since my tests had shown it to be unnecessary. I also replaced the LM5111-1M mosfet drivers by LM5111-2M. The difference is that the 2M is inverting while the 1M is not. The reason for changing this is because the 2M is available at a significantly lower price of CHF 1.35 vs CHF 2.25. Not a big deal if you just build a single prototype but I thought it might be smart to change this anyway. This also required some resistors to be changed from pull-downs to pull-ups. Except these details everything stayed the same with the drive circuit.

20160426_StandaloneAnemometer_012

I also had to re-design the power supply since the PIC needs a 3.3 volt rail as opposed to 5 volts in the driver test circuit. Since I had to re-design it anyway I also downsized the power supply somewhat. I’ve otherwise resisted all temptations to use smaller components but the power supply was just a bit too big with the two  SOIC8 chips and four size C tantalum caps.

The prototype now uses an MCP1755 linear 3.3V regulator in a SOT23-5 package with a 33uF size B tantalum cap at its input and a 10uF 0805 size ceramic cap at the output. A TCM829  (also in a SOT23-5 package) and two more 10uF caps produce the -3.3 volts output. So there is a total of three supply rails: +12V, +3.3V and -3.3V.

20160426_StandaloneAnemometer_006

A major challenge was to make do with the very limited number of I/O pins on the PIC. 28 pins seem like a lot for the task at hand but plenty of them are already used for things like supply voltages and the like.

In the end I managed to still get three independent interfaces to the outside world: USB 2.0, I2C and SPI. All these interfaces as well as just about any other signal of interest is easily accessible from one of the numerous 100mil headers along the edges of the board.

20160426_StandaloneAnemometer_007

The amplifier still uses a LMC6482 dual op amp , now running on a+/- 3.3 volt supply. The first stage amplifies the ground-referenced input signal by a fixed factor (currently 11 but this might change). The output signal is then biased to 1.65 volts and amplified once again. This time the gain can be adjusted digitally via a MCP4561 I2C digipot.

20160426_StandaloneAnemometer_008

Before I forget: The PIC gets its system clock from a 8MHz crystal. That might seem low but there are two (variable)  PLLs inside the PIC that (together with a number of pre- and post-scalers) let us produce the 48Mhz signal needed for USB as well as a reasonable clock speed to run the CPU and peripheral bus on (probably also 48MHz but we’ll see).

20160426_StandaloneAnemometer_013

The board layout proved to be a bit tricky because there isn’t that much space on the board and I had quite clear ideas where I wanted certain headers to be. So I was more than happy when all the traces were finally laid out.

As you can see, the PCB is already milled and the vias soldered. I can’t wait to build this thing up and start to do some programming. That will be the topic of my next post.

20160426_StandaloneAnemometer_014

As always, a zip file with the eagle files and PDFs of the schematic and board layout can be found on the overivew page.

And here‘s the finished board.

Ultrasonic Anemometer Part 18: Analog Signal Processing

20160320_AnemometerAnalog_001Recently, I’ve sucessfully tested the new driver ciruit for my ultrasonic anemometer. It performed even better than I expected and I will be happy to use it pretty much as it is.

By the way: If you want to get an overview over how this project has developed over time check out the overview page. If you’re more interested in my latest design, this link will take to my new attempt.

20160320_AnemometerAnalog_005

So we have a circuit that can send powerful ultrasonic pulses from the right transducer, receive the signal from the opposite transducer and route it through an amplifier. The next task is to tell the time-of-flight from the received signal. A contemporary  approach would probably involve some sort of DSP and software. My last approach used some analog circuitery to detect the zero crossings as well as the envelope of the received signal. Since most of the heavy lifting was done in hardware, a simple 8-bit microcontroller like the one on the Arduino UNO could be used to do the measurements.

For my new approach I haven’t quite decided which route to take.  To me they both have a certain appeal. And over the last year or so I’ve had quite some ideas on how to process the signal in hardware so I’ll give it a try and see how it works out.  In this post I’ll go through this new circuit and explain how it works (or is supposed to work) step-by-step.

20160320_AnemometerAnalog_003

The zero crossing detector (ZCD) is almost identical to to my last design. The amplifier output is biased to half the positive supply voltage and fed into a fast comparator (Microchip MCP6561R). On the comparator’s output we get a precise digital signal indicating if we are currently looking at the positive or negative half-wave. Right at the logic edge we observe a zero crossing which can then be used to very precisely determine the phase shift relative to the transmitted singal.

The more challenging part is to tell the absolute phase – this is where my last project was only partly successful. It used an active low-pass filter to get the envelope of the received singal. This envelope was then compared to some threshold and the time from the transmition of the singal to when the envelope exceeded the threshold was measured. With plenty of averaging this gave a usable but far from perfect indication of absolute phase. So this time I’ll try something entirely new.

20160320_AnemometerAnalog_002

The amplified singal is first run trough an active full-wave rectifier as found on page 257 of Horowitz and Hill’s 3rd edition of Art of Electronics. It uses two op amps as well as some resistors and diodes to produce a singal that corresponds to the absolute value of its input. The two op amps come in a single package. It’s the same type as for the amplification stage of the driver circuit – a Texas LMC6482.

Now the rest of the circuit is a bit more adventurous. It attempts to produce a signal that corresponds to the peak of the previous half-wave. So it is steady during each halv-wave period and should give a (hopefully precise) indication of the amplitude of the received signal. This singal can then sampled by an ADC at 80kHz triggered by the zero crossing detector. 80kHz is not that fast for a (say) 10-bit ADC and definitely much slower than what we’d need if we sampled the amplified signal directly.

20160320_AnemometerAnalog_008

The advantage of measuring the amplitude is the following: We can find the peak of the amplitude in simple software and use the time when the peak occured to find the absolute phase. So we are no longer dependant on the absolute amplitude (as we were with the envelope detector approach) but only care about when the peak in amplitude occured. I think (hope) this is a much more reliable approach.

In order to find the peak of each half-wave I use a pair of simple diode-plus-capacitor peak detectors. One is held stable (“hold”) and fed through an op-amp buffer to minimize droop while the other is looking for the next peak (“sample”). At the beginning of the sample period the capacitor is discharged through a n-channel mosfet that is turned on for just an instance.

20160320_AnemometerAnalog_006

The whole mechanism is controlled by the output of the zero-crossing detector so absolutely no software intervention is needed to produce it. The microcontroller can just wait for the ZCD to trigger an interrupt (as before) and take a sample of the output.

The circuit is not that complex and used an inexpensive and readily available 74HC4053 multiplexer at its center. I don’t have any idea yet how this thing will perform but I must say this little circuit was a lot of fun to design.

20160320_AnemometerAnalog_007

Until my next post I will have built and tested this cuircuit and will let you know how it performs. Until then I leave you with the eagle files as well as PDFs of the schematic and layout as a zip file.

Here’s how the final circuit looks and how it performs: Part 19.

PWM Dimmer for RGB LED

Finished RGB dimmer
Finished RGB dimmer

In my last post I’ve described the design and construction of my LED dimmer project. This project here is similar but a bit more involved. It controls RGB LEDs so it can not only change the brightness but also the color of the light. Instead of a simple pot it used a pair of rotary encoders with push buttons. One controls the brightness, pushing its button turns the light on or off. The other changes the color, pushing its button toggles between color and white.

 

Encoder's side
Encoder’s side

There’s also a I2C interface included this time. I originally had the idea to hook this thing up to a Raspberry Pi and so be able to control the light from my computer or cell phone. I did establish an I2C connection to the RPi and it all works but it’s now installed as a stand-alone solution.

Since we’re now controlling RGB LEDs we obviously need three independant PWM outputs, one for each for red, green and blue. But let’s go through the circuit step by step.

Power Supply

The board is powered from a fairly powerful 12V supply that is always on. A LM2931 turns this into a microcontroller-friendly 5V. But if we want to connect this board to a Raspberry Pi we need to match the RPi’s 3.3 volts operating voltage. Apart from hobbyist projects there aren’t many microcontroller circuits running at 5V nowadays. Most of the PIC16Fxxx family of chips still handle 5 volts but this is becomming more and more of an exception. So in order to be compatible with the rest of the world this board will need a way to adapt it’s voltage.

20160128_Projekte_072

What I’ve done here is the following: The board has it’s own 5V regulator and you can power from that using a jumper on the I2C header. On the other hand, if the board is connected to a Raspberry Pi over I2C, it will just freeride on the RPi’s 3.3V operating voltage. Since the board is only drawing a few milliamps at 3.3V this is perfectly fine. The RPi specs allow for 30mA or so to be drawn in this fashion.

Rotary Encoders

I’m using a pair of Bourns PEC11R-4215F-S0024. These are  24 steps-per-rotation encoders with a push button that I’ve used for other projects before. I’ve made it a habit to debounce switches and encoders in hardware rather than having to worry about it in software. There’s even an entire post just on that subject: https://soldernerd.com/2014/11/12/switch-debouncing-using-74hc14/.

So all 6 signals comming from the encoders are first RC filtered and then run through a 74HC14 schmitt-triggered inverter and reach the PIC nice and clean.

20160128_Projekte_058

Microcontroller

I’ve once again used a PIC16F1936 but this is entirely uncritical since most microcontrollers come with the features needed here.  We mainly need 3 10-bit PWM modules and an I2C interface if we want to connect to the Raspberry Pi.

The PIC is running at 32MHz using its internal oscillator which gives us a maximum (10-bit) PWM frequency of 31.25kHz which has proved adequate in my last dimmer project.

Output

I once again used the inexpensive yet powerful  Infineon IPB136N08N3 N-channel MOSFETs. Since I have to drive 3 of them this time I need two LM7111 dual MOSFET drivers. As opposed to last time when each output had its own capacitor, they now all share a 1.5mF electrolytic cap.

20160128_Projekte_069

Software

As so often, most of the interesting stuff happens inside interrupt service routines (ISRs).  This one serves two tasks:

  • Read the input from the rotary encoders. Every time one of these input signals changes, an interrupt (interrupt-on-change, IOC) is triggered and the ISR calculates the updated values for brightness and color and sets an update flag so the main code knows that something has changed.
  • Send and/or receive data over I2C. The PIC is configured as Slave so it won’t do anything unless some other device attached to it will request or transmit data. The ISR just technically handles the sending and receiving o data. It just fills a receive buffer or sends data from a send buffer. It is entirely up to the regular code what should be sent and how received data is interpreted.

20160128_Projekte_068

As I’ve mentioned I’m not using the I2C interface at the moment so the implementation is somewhat basic. Data can be sent to the board and it is stored in a recieve buffer but nothing is not processed. When asked for data it transmits up to 11 bytes indicating it’s current state of operation such as brightness of each color channel and some more data.

There is also nothing preventing the content of the buffer from being changed while a transmission is in progress. So if you’re planning to really use this I2C feature you probably want to improve it somewhat but the code (download link at the end of this post) gives a good, working starting point. If you need help, just ask.

Controlling the outputs is not that challenging. Its jus 3 10bit PWM modules  running 120 degrees out-of-phase to smoothen the current seen at the input. Again, the LM7111 I’ve used are of the inverting type so the duty cycle has to be inverted in software.

I’ve used a lookup table for brightness (only 32 brightness levels this time) and color.  I’ve defined 24 colors that make a nice color circle. You can turn the color encoder infinitely and just loop through the colors defined in the lookup table. When you press the button on the encoder, the color changes to plain white but the color is remembered so when you press the button again the same color comes back.  Brightness works in a similar way: press the button and the light goes off, press it again and the light is back with the same brightness as before. Overall, this makes a quite intuitive user interface.

Testing and Troubleshooting

Acoustic noise was not an issue this time. I started with 31.25kHz switching frequency and 120 degrees phase shift right away. Apart from that the power level is lower, more like 70 watts maximum. And I was using a different supply that might be less susceptible to acoustic noise. don’t know, haven’t tried.

20160128_Projekte_070

Mass connections have proved to be a problem, though. Usually I take great care during board layout to make sure all components have excellent ground connections. Together with the generous use of 100nF ceramics decoupling capacitors this prevents lots of problems before they even appear. Thank you John Catsoulis (http://shop.oreilly.com/product/9780596007553.do) for stressing this point when I started designing my own circuits. You might have noticed that just about every IC on any of my designs has its own ceramic cap on each of its power supply pins. That’s thanks to John and it has served me very well.

20160128_Projekte_059

But back to the problem: It seems that this time I’ve been a bit sloppy with my ground connections around the two MOSFET drivers and the encoder on the right. They’re not that bad but aparently not good enough. The LM7111 are quite powerful. Up to 5Amps peak current according to the datasheet. And  together with my not-so-great ground connections that was enough to get false triggering from that encoder.  A few wire bridges improving the ground connections solved that problem. I’ve already fixed that problem in Eagle so the files available for download should be fine.

20151231_Projekte_006

There was also another problem: It was impossible to turn the green (middle) channel off entirely. No matter what I did in software, the green LEDs always stayed on if only a little bit. I looked at the PWM signal from the PIC on a scope and there was a slight glitch every full PWM period, aparently when the PWM register overflows  from 1023 to 0.  The other two channels (red and blue) didn’t suffer from this problem.

20151231_Projekte_005

As I said, I have to correct for the inverting nature of the LM7111 in software. The enhanced (ECCP) PWM modules can do this automatically. But there are only two if them in a PIC16F1936 so I had to use a regular (CCP) module for the green channel. So in order to turn the green LEDs off the duty cycle has to be 100%. And that seems to be impossible without that little glitch.

I first tried a pull-up resistor on that PWM signal but that didn’t help. The pic seems to actively pull that pin low. So I resorted to a 10pF cap to ground which finally solved the problem.

20151231_Projekte_007

Since the board is installed hidden in some kind of bookshelf I didn’t make a new pretty board with all these fixes already in place. But I’ve now  been using it for two months or so and it works perfectly every day.

I’ll finish this post with a few impressions of the final product and the download link below.

20160211_Projekte_037

20160211_Projekte_033

20160211_Projekte_031

As always, here you find the Eagle Files, PDFs of schematic and Board as well as the code.

USB Boost Converter

_MG_1042
Finished 5V to 12V USB boost converter

I frequently need a low-power supply to run a microcontroller system. Typically, one uses a lab power for such purposes. But at least on the desk where I do the programming I don’t have one. Since these systems typically consume little current it would be handy to be able to power them from USB. Most of my devices have on-board regulators so the voltage is rather uncritical. For 3.3 volt devices, the 5V from USB is just right. But others have a 5V regulator so they need a higher supply voltage. And even others might even need 12 volts.

_MG_1035
Fully assembled PCB

So I decided to build a small low-power boost converter with a USB plug on its input. The output voltage is set by a pair of resistors. So once built the output voltage is fix but my idea is to build several of them anyway. So some will produce 12V while others will produce 7.5V. The latter is intended to power all those systems with on-board 5V regulators. Of course, you could use a trimmer or pot if you wanted a variable voltage version. However, the feedback loop requires a capacitor for stability and its value also depends on output voltage. You might well find a value that results in stable operation over a say 6 – 12V range, but I haven’t tried that.

_MG_1015
Bottom side

I had a look for a suitable integrated switcher IC and found the Texas Instruments LMR62014. It comes in a small SOT23-5 package. It switches at a high frequency of 1.6MHz which will keep the other components small, too. It switches up to 1.4 amps. It’s easy to use. And even afordable, around 1.50 a piece. The datasheet is very helpful when it comes to PCB layout. It includes a two-layer sample layout that works even with hobbyist-sized components (0805, 1206 for the input and output capacitors).

20141115_173315
Not a bad heat sink

Generally, layout is important with switch-mode DC-DC converters. Their operation requires switching square-wave power signals (as opposed to just logical-level signals where little current flows). And that requires careful layout in order to minimize stray inductance, mainly. Things are more forgiving when you work with relatively slow (say 100kHz) switchers but get much more demanding when switching at higher frequencies. There has been a steady trend to ever-higher frequencies and 1.6MHz is fairly high even by 2015 standards. So I was very happy to have a nice layout example to start with.

_MG_1014
Top side

As you can see from the photo above, the thing is small, only 26 x 14mm. Also note how the layout makes the components magically fit together without any long traces and few vias.

20141115_173232
Home brew constant current dummy load in action

So far, I’ve built two units, one running at 12V, the other at 7.5V. Theoretically, one should be able to pull 580mA and 930mA from them, respectively. Of course, these are theoretical figures assuming no losses. Also, the 1.4A rating on the IC is likely the current limit at the top of the switching cycle (the datasheet will tell you or course but I don’t have the PDF open right now), not an average. And thermal considerations might also put limits on continuous currents. More on that later. And don’t expect to be able to pull 1.4A from a random USB port (which would violate the USB specifications anyway). But given my use-case for these things I’m entirely happy if I can pull a 100mA or so. And that should work comfortably.

20141116_144615
Switcher IC: 70 degrees @ 200mA
20141116_144627
Diode: 58 degrees @ 200mA
20141116_144553
Coil: 50 degrees @ 200mA

I’ve pushed both versions to their respective limits on the bench, using a stiff 5V supply and my home-brew constant current dummy load (link). With case temperatures approaching 100 degrees centigrade I was able to pull around 250mA of continuous current from the 12V version. The ICs include thermal limiting so you don’t need to worry too much about damaging them when performing this kind of tests. As you can see on the photos, I did these tests with the naked PCBs sitting in a vise which probabely made a not-so-bad heatsink for the board as a whole.

20141116_144738
Output voltage folds back when the switcher gets too hot

I’ve encountered slight stability problems with the 12V version (but not with the 7.5V one). There is some oscillation at currents above 200mA or so. Changing the value of the compensation capacitor changed the frequency and amplitude but I haven’t managed to get rid of it entirely. But anyway, I won’t run them at 200mA so I haven’t put much more effort into this.

_MG_1045
Close up of the final product

The finished units have a USB wire on the input and a arduino-compatible plug on the output. To protect against short-circuits I’ve put them in a piece of shrinking hose which is a bit of a themal nightmare of course. There is also a voltage drop over the USB cable which means the input voltage seen by the converter is below 5V even with a perfectly stiff USB port. Which in turn means more work for our converter, making things worse.

_MG_1040
Shrinking hose doesn’t help in keeping it cool

I have frequently used the 7.5V version to power my Ultrasonic Anemometer which pulls around 60mA. That’s the kind of application that I had in mind for this little device and it works well for that. It hardly gets warm at all and provides reliable power on my desk without the need for a lab power supply.

Attached the Eagle files as well as a PDF of the schematic and layout: USB_BoostConverter