Tag Archives: DC-DC converter

MPPT Solar Charger Testing II

It’s time to follow up on the MPPT Solar Charger project. Progress has been slow since I’m currently working full time and doing a master’s degree at the same time. Given that this blog has previously been something close to a 50% job at times things will necessarily slow down a bit. But all the projects, including this one and the ultrasonic anemometer are alive and well and I’m working on them whenever I find some time.

20161012_userinterfacereva_014

User Interface

So what’s new with the MPPT solar charger? First of all, it got this nice user interface. Unfortunately there were still some issues with the first version so there is an identically looking but much-improved and bug-free Rev B.  I’ll do a separate post on that documenting all the things I’ve changed.

I re-used the white-on-blue display from the initial version for the Rev B. as opposed to the black-on-white used with the Rev A. They are pin compatible so you can use whichever you prefer. I more and more start liking that black-on-white look. It’s about 10 bucks cheaper as well. What’s your opinion on this?

img_4334

Solar Panel drains Battery

My intention with this design was to just leave the solar panel connected to the input of the buck converter. There’s a problem with that, however. The input of a buck is always at least at the output voltage minus a diode drop. With a 12V lead-acid battery at the output the input (i.e. where the solar panel is connected) the voltage never drops much below 12 volts.

That’s a serious problem since even a small solar panel like the monocrystalline 30W panel I have here sinks around 10mA at that voltage. So whenever the panel is not providing any power it considerably drains the battery.

Try a Diode

Obviously we need a way to avoid that. The first solution that comes to mind is a diode. But there’s a problem with that, too. To keep the power loss in the diode acceptable, the diode needs to have a low forward voltage. However, any diode with a low forward voltage also comes with a high reverse leakage.  Physics seems to dictate that.

Leakage can easily be in the range of milliamps for a diode that can handle, say, 4A like needed here. And that reverse leakage is also highly temperature dependent. It may be ok-ish at room temperature and then detoriate by an order of magnitude at 50 degrees centigrade.

To get an acceptable reverse leakage one needs to tolerate at least half a volt of forward drop which is something like 3% in efficiency. Since our converter operates at around 97% efficiency that would mean doubling the energy dissipated.

P-Channel or N-Channel Mosfet

So the next obvious thing to try is a mosfet acting as a switch.  Yes, a mosfet also has a body diode that also has a reverse leakage. But the body diode is a bad diode in terms of forward drop and has a correspondingly low reverse leakage.

A nice way of solving our problem would be to use a p-channel high-side switch disconnecting the battery from the converter whenever the panel is not producing. That not only disconnects the panel but powers off the entire buck including the input and output caps and everything. Where there is no voltage no power can get wasted. Perfect.

img_4342

Unfortunately, powerful (i.e. low Rds-on) p-fets are relatively large,  rare and expensive. As a rule of thumb a p-fet needs twice as much silicon area for the same performance compared to a n-fet. Besides that, that would be another type of component and I’m trying to not use too many distinct components.

So the other solution is to use an n-fet as low-side switch just disconnecting the panel. We already have 6 powerful n-fets in our design and they are cheap, too. So this is what I’ll do in the next version.

For now I’ve used one of the power outputs to connect the panel. I’ve cut some traces and soldered in some wires so that the fet is on whenever the buck is powered on.

Buck Software

During early testing of the buck converter I managed to kill the bottom fet several times. Since I was able to run the buck at relatively high power levels for prolonged periods of time without any issues (and without getting hot) I suspected that this was caused by carelessly written software. This seems to have been the case indeed. Whenever I killed a fet it happened at startup or shutdown, usually the latter. In the mean time I’ve written well-defined startup and shutdown routines and never had any issue since.

bootstrapcapacitorcharging

Synchronous converters are dangerous in this respect. It is very easy to short the battery to ground via the bottom fet. All it takes is a duty cycle that’s too low or a timer is running too slow or not at all. Or you stop the PWM module at a time when the bottom fet is on and it will stay on forever.  Or at least a few milliseconds until it’s dead.

Asynchronous topologies are much more forgiving in this respect since you can’t short anything. So an easy solution would be to start up and shut down in asynchronous mode. We can easily make this an asynchronous converter in software by just not utilizing the bottom fet. The diode in parallel with it will then automatically take over.

Unfortunately we cannot start up in asynchronous mode. Why? To enable the upper fet we need a bootstrap voltage above the input voltage. And we don’t have that unless the converter is running. It’s a chicken and egg problem, really. So we need to start up in synchronous mode at least for a few switching cycles for the bootstrap diode to charge up.

That’s exactly what the startup routine does. It completes 16 cycles in synchronous mode at a neutral duty cycle. What do I mean by neutral? Simple: Duty Cycle = Output Voltage / Input Voltage. That means no current actually flows on average. So this is a nice, soft way to start up. After those 16 duty cycles the buck enters asynchronous mode. As the screenshot above shows, the bootstrap capacitor is fully charged after just one full duty cycle so that number is more than sufficient.

This routine is critical. If it doesn’t do precisely what it should chances are high that the buck is destroyed. So I’ve checked it carefully by both looking at the code and the scope. I’ve run it many times and observed closely what it does just to be sure it starts up nicely very time.

Why run in asynchronous mode? Because it’s more efficient at low power levels. Once the current rises above a software-defined threshold the converter will change to synchronous mode. If the current later falls below a second (lower) threshold, the buck changes back into async mode.

The optimal values for the two threshold will have to be determined experimentally but will likely be in the range of a few hundred milliamps.

buckturnoff

The shutdown sequence is simple. The buck is shut down if the current falls below a very low threshold (say, 10mA) below which it cannot run profitably. If the current falls even lower we are better off shutting down the buck and entering a low-power mode. Since the current is low when we shut it off, the converter is already in async mode. So shutting it down is now easy and uncritical. We just turn off the top fet and can then also turn off the timer and supply voltage to the buck. The screenshot above shows an example of that.

Conserving power

A main feature of this solar charger is it’s ability to (hopefully…) run at a very low (<100microamps) current when not in use. So we obviously need to turn off everything we don’t need and run the PIC at a much lower frequency as well.

The PIC’s maximum operating frequency is 48MHz. This is the frequency it runs at when the buck and/or USB (not yet implemented) is on. These two features need that clock frequency to perform their task.

If both the buck and USB are off we can clock the PIC down to 8MHz which already saves a great deal of power. At 8MHz we can still do everything else, including running the user interface. Updating the display and particularly calculating the display content consumes quite some computation time and so we need a few MHz to do this.

If the user interface is not used for a certain time (say, 10 seconds), it is turned off. We can then lower the board voltage to 2.3 volts and lower the CPU frequency even further to 32.768kHz.  This is the frequency of the real-time clock that is running anyway. At such a low frequency the PIC’s computational power is low but still sufficient to do some housekeeping tasks.

One can wake up the user interface at any time by pressing the push button. Turning the encoder won’t help because that, too, has been powered off.

While in this low power mode every 6 seconds the board voltage is raised to 3.3 volts and all temperatures as well as the input and output voltages are measured. That all happens at 32.768kHz. After the measurement is complete the PIC decides if the panel voltage is high enough to start harvesting energy or not. If this is not the case the board voltage is lowered again and a new set of measurements is captured 6 seconds later.

img_4336

Despite all those efforts the board consumes something like 530 microamps which is much more than it should. About 100 microamps comes from the voltage divider used to measure the panel voltge. That’s an easy to solve design problem that I’ve described earlier already. But that still means that something is drawing 400 microamps. Not much at all but still way too much.

I’ve spent an evening trying to find the problem but I still don’t know. I’ve suspected the capacitors but when I measured some spare caps of the same type they hardly drew any current at 12 volts. I also un-soldered the buck’s mosfet driver but that made hardly any difference so that’s also not the problem. It may even just be some near-short on my board homemade board. So I leave that for now and check again once I have a revised design with a proper PCB.

Buck testing

I’ve saved the most interesting part for last 😉 I’ve established before that this converter has a similarly high efficiency than the Arduino version published some time ago. But at that time I was only able to test up to 35 or so watts.

This solar charger is capable of handling much more power than that. Testing how much was a bit more difficult than expected. Unless the battery is very empty it won’t draw as much as this charger is able to provide. And you don’t want to discharge a lead acid battery too much, they don’t appreciate it at all. So once again my constant current dummy load came to the rescue.

img_4339

With the dummy load at one of the power outputs I was able to draw some serious current. I set the dummy load to 4 amps and the battery absorbed (or provided) whatever was left. Obviously, I can only do that for a limited amount of time until the dummy load gets too hot. It automatically shuts down once the heat sink reaches 70 degrees centigrade which is soon the case at 4 amps.

I let the charger draw 4.5 amps at a bit more than 17 volts for as long as I could. The coil got quite warm, slightly hot even, maybe something like 60 degrees. The mosfet only got lukewarm and I’m not sure if this was because of their own power dissipation or due to their proximity to the coil.

img_4341

So from this test I’d conclude that this was about the power which the charger can handle for a prolonged period of time. So I think something like 75 watts is a realistic power rating.

I’ve also had another look at the datasheet of the coil and it pretty much confirmed my findings. 75 watts at (say) 13 volts output corresponds to 5.8 amps through the coil. The datasheet states that the coil starts saturating at 8.2 amps which means we’re still safe with 5.8 amps plus the ripple current. The datasheet also states a 40 degree temperature rise at 5.3 amps. So thermally the coil is pretty much at its limit at 75 watts. That, too, seems realistic to me having touched it after some time at that power.

The road ahead

So how to continue? As we have seen, there is a number of design issues but the general concept works. During testing and debugging I’ve cut and re-soldered many traces and also made some modifications like the one with the n-fet described above. I’ve unsoldered and changed many components as well. All of that doesn’t improve the reliability of the board. At some point it makes sense to design a new version, build it and take it from there. A clean slate kind of.

I think this point has been reached here. So I will work on a new revision from now on. The concept won’t change at all but I’ll try to apply what I’ve learned so far. I also hope to reduce the number of different components, reduce the size and total cost while not sacrificing performance. In other words move a step towards a design that may one day be built as a small series. Let’s see.

Arduino MPPT Solar Charger Shield

20160119_Projekte_028

A friend has approached me regarding his solar project. He wants to install a solar panel together with a battery and an inverter in order to have power at his allotment garden. He had looked at a hobbyist project where an arduino was used to build a MPPT (maximum point of power tracking) charge controller. I took a look at the design, liked a lot of what I saw and decided to build something similar.

20160119_Projekte_032

The basic idea behind an MPPT solar charger is simple. A solar panel has a certain voltage (in the region of 17 to 18 volts for a 12 volts pannel, somwhat dependent on temperature) at which it provides most power. So as long as the battery needs charging, you want to pull just as much current to reach this voltage. But once the battery is full you need to avoid overcharging the battery. So you want to maintain a maximum voltage for your battery (somewhere around 13.8 volts for a 12 volt lead acid battery) and no longer care about the pannel’s voltage.

20160119_Projekte_029

So the charger needs to convert an input voltage of 17-18V to an output voltage of 12-14V as efficiently as possible. Obviously, a step-down (aka buck) switching converter is ideally suited for the job. However, a typical DC-DC converter is designed to maintain a stable voltage at it’s output, independent of it’s input voltage. As described above, our requirements here are different.

20160119_Projekte_038

Switching converters are controlled by the duty cycle of a (typically) fixed-frequency PWM signal. So a microcontroller could be used to do the job. In most applications, this wouldn’t work that well because a microcontroller would be too slow to react to sudden changes in load or input voltage. But this is not much of a concern in our solar application: Sun intensity changes within seconds at best and the battery will absorb any sudden changes in load. So if we adjust our duty cycle a few times per second we’ll be more than fine. And that’s easy to do with a microcontroller.

20160119_Projekte_030

The next step was to figure out at which frequency to run our converter. An arduino runns at 16MHz. At a 8-bit resolution, this gives us a maximum PWM frequency of 62.5kHz. That’s a pretty slow speed for a switching DC-DC converter nowadays. Most modern designs run in the hundreds of kHz to a few MHz. The main reason of using higher and higher switching frequencies is size. The higher the frequency, the smaller the inductor can be. For us, using a somewhat bigger inductor is totally acceptable. And in terms of efficiency, a lower frequency is even preferable since it reduces switching losses.

20160119_Projekte_037

The project here is intended mainly as a proof on concept. I expect it to be fully functional but it will consume quite a bit of power while sitting idle. The display (including backlight) is always on, the same goes for all the other components. But the main drain on the battery will be the Arduino itself which consumes around 50mA when running at 16MHz. That might not sound like much but it will add up during the many hours the solar panel doesn’t produce any power. The system will be installed in Zürich, Switzerland so you can’t count on having 8 hours of sunshine every day. In winter, there might be snow on the panel, preventing it from producing anything for weeks in an extreme case. So a productive system should draw hardly any current (say <1mA) when not doing anything useful.

20160119_Projekte_031

At least for now, the we’ll be using a 30W 12V monocrystaline panel and a 45Ah car battery. So I’ve scaled this converter to comfortably handle 30W input power which translates to about 1.8 amps at the input and 2.5 amps at the output.

As deba168’s design, I’m using a synchronous buck topology. If you’re new to switchers, you might want to check out this wiki page. If you’re serious about designing your own you might want to read Sanjaya Maniktala’s ‘Switching Power Supplies A – Z’, it’s a great book. I’ve also read his other two books on the topic but this is the one I love the most, especially to start with. I’m also using the same half bridge driver (IR2104) even though I find the 540ns off time somewhat excessive. But I like the enable/pwm input signals as opposed to having to drive each fet individually and I found this feature to be somewhat rare.

20160119_Projekte_035

Apart from that I’ve really done my own design, mainly using parts I’ve still had from previous projects. As most stuff I build, it’s entirely SMD, except for the input and output capacitors. Not only are SMS designs smaller in size. The parts are much easier to source (and often cheaper) than conventional through-hole components nowadays. And contrary to popular belief, with a bit of practice I find them easier and faster to solder.

The FETs are IPB136N08N3, a quite large surface-mount type that I use quite frequently. They have a 11mOhms Rds-on resistance which will be great for efficiency. They are also easy to drive in terms of gate capacitance. Probably a bit oversized for the 2.5 amps we’re trying to switch here but I still have some here and they’re not expensive, around 70 cents each. The inductor is a 100uH Coilcraft MSS1583 with a resistance of 0.103 ohms and a 2.8A current rating. 100uH is a bit much at full load, 68uH would easily do. But the system will spend most time at moderate loads (remember, this is not California). I’ve ordered a 68uH as well and intend to use it for a later design or maybe to see what difference it makes. Input and output caps are quite a bit oversized as well, 680uF 35V at the input and 820uH 25V at the output. They are from the Panasonic FR series which I like using for my switchers since they work well at frequencies up to a few hundred kHz while being afordable and having very high ripple current ratings.

20160119_Projekte_034

I’m doing voltage and current sensing at both input and output. I’ve decided to use conventional high-side, shunt resistor based current sensing. The Texas INA213 are fairly precise, work up to 26 volts and have a fixed gain of 50. Also here, I still had some left over from my dummy load project. Most components are much cheaper if you buy 10 in stead of just one or two so I tend to buy 10 😉

I’ve also added a standard 2×16 characters LCD display so I can see what’s going on. And you may have noticed that I’ve put a zero ohms resistor at several places. This will enable me to easily measure current consumption of the respective sub-circuit. As mentioned before, current consumption will play a major role in the final design so I’m interested to see how much juice is used by certain components under real-life conditions.

Besided the connectors for the panel and the battery, I have added a separate connector for the power supply. This is handy for early testing and programming. Just connecting this supply will power up the entire system. The arduino, the display, the converter and all. But there is not yet any load at the converter’s output and no supply at it’s input. So I can start programming the Arduino, start measuring and displaying voltages and currents and even turn on the converter to see if everything behaves as expected. And since there is nothing at the converter’s input and output, not much can go wrong. I don’t risk blowing up the FETs due to a bug in the program or a problem with the board. Only once I’m confident that everything works as expected I will connect a panel and a battery. At that point, the 12V input can just be connected to the battery as well.

20160119_Projekte_039

I’ve written a simple sketch for the Arduino that measures voltage and current at the input and output and displays the result on the LCD. Once the input voltage exceeds a certain threshold, it will enable the half bridge driver and start switching. It starts at a duty cycle that will produce an output voltage equal to the current battery voltage. That means that no current will flow to the battery yet so the converter can start up with no load. Once the switcher is turned on, the Arduino will adjust the duty cycle about 4 times a second. If the input voltage is above its optimum and the battery has not yet reached its maximum voltage, the duty cycle will be increased by 1/255. If either the battery voltage is too high or the input voltage is below its optimum, the duty cycle is decreased by 1/255. There are also some checks for overcurrent at the input and output.

20160119_Projekte_036

The switcher is turned off when the input voltage or the output current falls below a pre-defined threshold. This is a synchronous converter so current can flow back from the battery to the panel. We can’t just wait for the input voltage to fall. As long as the switcher is on, the input will never fall because energy is pumped from the battery to the panel. A synchronous buck converter is just the same as a synchronous boost converter with its inputs and outputs inverted. So we need to make sure current is actually flowing to the battery. Luckily, a car battery will always draw a clearly non-zero current at 13.8 volts, even when fully charged. So when current stops flowing to the battery, we know the panel is no longer able to provide any power and we can or rather must turn the converter off.

20160119_Projekte_033

This post ist getting rather long so I’ll stop here and will write another post later about how the circuit has been performing and what I have learned so far. I guess this project will turn into a little series, maybe with further (and hopefully improved) versions being developped. Looking forward to that.

Before I forget: Here’s the eagle files as well as schematic and layout PDFs as a zip file: SolarCharger_Rev1.

Update: Click here to see how the shield performs or here for an overview over this project.

Update 2: Now there is an entirely new design.

USB Boost Converter

_MG_1042
Finished 5V to 12V USB boost converter

I frequently need a low-power supply to run a microcontroller system. Typically, one uses a lab power for such purposes. But at least on the desk where I do the programming I don’t have one. Since these systems typically consume little current it would be handy to be able to power them from USB. Most of my devices have on-board regulators so the voltage is rather uncritical. For 3.3 volt devices, the 5V from USB is just right. But others have a 5V regulator so they need a higher supply voltage. And even others might even need 12 volts.

_MG_1035
Fully assembled PCB

So I decided to build a small low-power boost converter with a USB plug on its input. The output voltage is set by a pair of resistors. So once built the output voltage is fix but my idea is to build several of them anyway. So some will produce 12V while others will produce 7.5V. The latter is intended to power all those systems with on-board 5V regulators. Of course, you could use a trimmer or pot if you wanted a variable voltage version. However, the feedback loop requires a capacitor for stability and its value also depends on output voltage. You might well find a value that results in stable operation over a say 6 – 12V range, but I haven’t tried that.

_MG_1015
Bottom side

I had a look for a suitable integrated switcher IC and found the Texas Instruments LMR62014. It comes in a small SOT23-5 package. It switches at a high frequency of 1.6MHz which will keep the other components small, too. It switches up to 1.4 amps. It’s easy to use. And even afordable, around 1.50 a piece. The datasheet is very helpful when it comes to PCB layout. It includes a two-layer sample layout that works even with hobbyist-sized components (0805, 1206 for the input and output capacitors).

20141115_173315
Not a bad heat sink

Generally, layout is important with switch-mode DC-DC converters. Their operation requires switching square-wave power signals (as opposed to just logical-level signals where little current flows). And that requires careful layout in order to minimize stray inductance, mainly. Things are more forgiving when you work with relatively slow (say 100kHz) switchers but get much more demanding when switching at higher frequencies. There has been a steady trend to ever-higher frequencies and 1.6MHz is fairly high even by 2015 standards. So I was very happy to have a nice layout example to start with.

_MG_1014
Top side

As you can see from the photo above, the thing is small, only 26 x 14mm. Also note how the layout makes the components magically fit together without any long traces and few vias.

20141115_173232
Home brew constant current dummy load in action

So far, I’ve built two units, one running at 12V, the other at 7.5V. Theoretically, one should be able to pull 580mA and 930mA from them, respectively. Of course, these are theoretical figures assuming no losses. Also, the 1.4A rating on the IC is likely the current limit at the top of the switching cycle (the datasheet will tell you or course but I don’t have the PDF open right now), not an average. And thermal considerations might also put limits on continuous currents. More on that later. And don’t expect to be able to pull 1.4A from a random USB port (which would violate the USB specifications anyway). But given my use-case for these things I’m entirely happy if I can pull a 100mA or so. And that should work comfortably.

20141116_144615
Switcher IC: 70 degrees @ 200mA
20141116_144627
Diode: 58 degrees @ 200mA
20141116_144553
Coil: 50 degrees @ 200mA

I’ve pushed both versions to their respective limits on the bench, using a stiff 5V supply and my home-brew constant current dummy load (link). With case temperatures approaching 100 degrees centigrade I was able to pull around 250mA of continuous current from the 12V version. The ICs include thermal limiting so you don’t need to worry too much about damaging them when performing this kind of tests. As you can see on the photos, I did these tests with the naked PCBs sitting in a vise which probabely made a not-so-bad heatsink for the board as a whole.

20141116_144738
Output voltage folds back when the switcher gets too hot

I’ve encountered slight stability problems with the 12V version (but not with the 7.5V one). There is some oscillation at currents above 200mA or so. Changing the value of the compensation capacitor changed the frequency and amplitude but I haven’t managed to get rid of it entirely. But anyway, I won’t run them at 200mA so I haven’t put much more effort into this.

_MG_1045
Close up of the final product

The finished units have a USB wire on the input and a arduino-compatible plug on the output. To protect against short-circuits I’ve put them in a piece of shrinking hose which is a bit of a themal nightmare of course. There is also a voltage drop over the USB cable which means the input voltage seen by the converter is below 5V even with a perfectly stiff USB port. Which in turn means more work for our converter, making things worse.

_MG_1040
Shrinking hose doesn’t help in keeping it cool

I have frequently used the 7.5V version to power my Ultrasonic Anemometer which pulls around 60mA. That’s the kind of application that I had in mind for this little device and it works well for that. It hardly gets warm at all and provides reliable power on my desk without the need for a lab power supply.

Attached the Eagle files as well as a PDF of the schematic and layout: USB_BoostConverter